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The dynamics for a system of hard spheres with dissipative collisions is 
described at the levels of statistical mechanics, kinetic theory, and simulation. 
The Liouville operator(s) and associated binary scattering operators are defined 
as the generators for time evolution in phase space. The BBGKY hierarchy for 
reduced distribution functions is given, and an approximate kinetic equation 
is obtained that extends the revised Enskog theory to dissipative dynamics. 
A Monte Carlo simulation method to solve this equation is described, extending 
the Bird method to the dense, dissipative hard-sphere system. A practical kinetic 
model for theoretical analysis of this equation also is proposed. As an illustra- 
tion of these results, the kinetic theory and the Monte Carlo simulations are 
applied to the homogeneous cooling state of rapid granular flow. 

KEY WORDS:  Granular flow; hard spheres; kinetic theory; hydrodynamics; 
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1. I N T R O D U C T I O N  

The dynamics of hard spheres is conceptually simple but mathematically 
complicated due to the singular force and the failure of Newton's second 
law to apply in its usual form. Twenty-five years ago Matthieu Ernst and 
collaborators presented the first precise discussion of the generator(s) of 
hard-sphere dynamics. II~ Subsequently, this formalism was the basis for the 
most penetrating studies of anomalous dynamics in simple fluids (e.g., non- 
analytic defisity dependence of transport coefficients, long-time tails, mode 
coupling). Among these developments was a study of hard-sphere kinetic 
theory leading to the revised Enskog theory (RET) by van Beijeren and 
Ernst. t2J This kinetic theory is unique in providing a semiquantitative 
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description of the hard-sphere system over all length and times scales, 
including both fluid and crystal phases. We are very pleased to contribute 
to this volume in honor of the many contributions to nonequilibrium 
statistical mechanics by Matthieu, with some extensions of his work on 
hard spheres to the case of dissipative (energy-nonconserving) dynamics. 

Current interest in hard-sphere dynamics with dissipative collisions is 
due in part to its potential as a model for granular media in rapid flow. c-~ 
Granular media consist of a dense collection of solid particles immersed in 
gas or liquid. When driven to rapid flows the solid particle collisions 
dominate the particle-fluid interactions and effects of the surrounding fluid 
can be neglected. As an idealization, the system can be understood as a 
collection of hard spheres for which the well-developed methods of non- 
equilibrium statistical mechanics can be brought to bear. However, as the 
collisions in granular flows do not conserve energy, it is necessary to 
consider the modifications of these methods for dissipative dynamics. The 
objective of our present work is to provide a description of these changes 
at the levels of statistical mechanics and kinetic theory. We also discuss 
adaptation to dissipative dynamics of two recently developed practical 
methods for solving the kinetic equation, Monte Carlo simulation ~4~ and 
kinetic modelsJ 5~ Analysis of granular flow experiments has typically been 
in analogy with fluid dynamics (see ref. 6 for a recent overview). However, 
the basis for a fluid dynamics description, its form, and the dependence 
of its parameters (e.g., transport coefficients) on density and degree of 
dissipation remain open questions. The hard-sphere system and associated 
nonequilibrium statistical mechanics provide the foundation to address all 
of these questions both qualitatively and quantitatively. For example, 
a simple kinetic model for dissipative dynamics at low density was used 
recently to determine precise conditions under which a hydrodynamic 
description exists and to provide all details of that description, c7~ The 
results below allow extension of that analysis to the more realistic case of 
higher densities. 

Many of the most interesting recent developments have originated 
from molecular dynamics simulations of the hard-sphere system considered 
here. The initial preparation in these simulations corresponds to a spatially 
homogeneous cooling state. However, a variety of spatial structures and 
phenomena develop at later times (cluster formation, shear, collapse) as a 
function of the degree of dissipation and particle densityJ s ~ Their under- 
standing requires more than a phenomenological hydrodynamic description. 
The statistical mechanics presented here corresponds faithfully to the 
simulations 4 and admits a theoretical approach to understanding these 

4 Closely related work has been done by van Noije et aU I'-~ 
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complex phenomena. The nontrivial mean-field kinetic theory goes beyond 
the usual Enskog equation with differences that may be significant for the 
nonlinear evolution of the density during the cluster phase. Similarly, the 
new Monte Carlo technique for the solution to this equation admits study 
of inhomogeneous states at finite densities. Finally, the new kinetic model 
provides a means for practical analytic studies beyond the hydrodynamic 
level. Some further applications of statistical mechanical methods to the 
system of inelastic hard spheres are noted in the final section. 

2. STATISTICAL M E C H A N I C S  AND KINETIC THEORY 

The objective of this section is to describe the Liouville formulation 
for hard-sphere dissipative dynamics and the associated BBGKY hierarchy 
for reduced distribution functions. The dynamics of a phase function 
A({r~,v~},t) is defined in terms of the coordinates and velocities 
{r~(t), v~(t)} as functions of time for t>~O by 

A( {r~, v~}, t) -~ A( { G(t), v~(t)} ) (1) 

For hard spheres the particles move along straight lines until they encounter 
another particle at a separation equal to their diameter, a. At that point the 
velocities of the colliding pair change instantaneously, followed by sub- 
sequent straight-line motion at their new velocities. Here we limit attention 
to smooth spheres, for which the relative velocity changes along the line 
joining the centers of the spheres; more generally, it is possible to consider 
rough spheres with a tangential change in relative velocity ~ ~31 and mixtures 
of different size particles ~ ~4~ for a more realistic description. Let g = v ~ -  v2 
denote the relative velocity for particles 1 and 2. Then the relative velocity 
after a collision of these two particles, ~, is given by 

~=g--(1 +cx) O(g'6) (2) 

where ~ is a constant in the range 0 < ct ~< 1. The total momentum of the 
pair is conserved so that the total energy change on collision is 

L - E = - ( 1 - ~ - j ~ - ( g . e )  2 (3) 

This identifies ~ as the coefficient of restitution, where a -- 1 corresponds to 
elastic collisions. 

To develop the nonequilibrium statistical mechanics of this system it 
is necessary to identify the generator for the dynamics. Since the velocity 
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change occurs instantly, the associated force is singular and a reformulation 
of Newton's equations of motion is required. Consider the expectation value 
of the phase function A({r~(t), v,(t)}), ' 

(A ( t ) )  ==- f d ip (F)  A(F(t)) (4) 

where F denotes the N-particle phase point, F*--, {r~, v,}, and F(t) is the 
evolution of that phase point according to the hard-sphere dynamics at 
time t. Also, p({r~, v~})= W({r~})fi({r~, v,}) is the probability density for 
the initial state. The right side of this equality makes explicit the fact that 
all physical states have an overlap function, W({ r~} ), which vanishes for 
any configuration with overlapping spheres and is unity otherwise. The 
generators for the dynamics, L and if., are defined by 

( A(t) ) - f dFp(r)  e "A(s  = ~ dr(e- C,p(s A(/') (5) 

The second equality expresses the dynamics in terms of an evolution of the 
probability density. For conservative, nonsingular forces the two generators 
are equal, but for nonconservative and/or singular forces they are not equal. 

To determine the form of the generators one can proceed in a direct 
way or consider first collisions for finite forces and take an appropriate 
hard-sphere limit. The details will be described elsewhere and only the 
results given here, 

N N N 

L= Z Z Z 
ot=l  o~=l fl#~x 

(6) 

N N N 

E= E E E 
~ = 1  a . = l  [ l ~  

(7) 

The first terms on the right sides generate free streaming, while the second 
terms describe velocity changes. The two binary collision operators T(0q fl) 
and T(a, fl) for particles ct and fl are given by 

T=  - a  2 f d.Q 6)( - g "  8)(g" ~) ~(r - ~)(b - 1 ) (8) 

T=a2 f df~O(g'~)(g'~)[~-23(r-~)b-~-~(r+~)] (9) 
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where dO denotes the solid angle integration for the unit vector #, r is the 
relative position vector of the two particles, and the operators b and b -  
are defined by 

bF(g) = F(bg), b - ' F (g )  = F(b - 'g)  (10) 

b g = g - ( l + ~ )  6 (g .6) ,  b - t g = g - ~ - I ( l + ~ )  O(g-O) (11) 

Thus, b changes functions of the relative velocity to the same function of 
the scattered relative velocity bg = ~ of Eq. (2). Similarly, b - l  generates a 
function of the inverse velocity with the property b - t b =  1. The results 
(5)-(11) provide a generalization of the hard-sphere dynamics of ref. 1 to 
include the inelastic collisions case ~ < 1. Conservation of particle number 
and momentum is assured by the properties 

f dvl du + ~(V2)] Tp(xi, x2) 

= I dv, dv2{ Tiff(v,) + Lb(v2)] } p(x , ,  x2) 

= 0  (12) 

where qJ(v) = 1 or v. 
The N-particle distribution, P({G, %}, t), evolves according to the 

Liouville equation, 

(O,+/~) P({G, v~}, t )=O (13) 

The BBGKY hierarchy for the associated reduced distribution functions 
follows in the usual way by partial integration over N - I  degrees of 
freedom, 

(0, + L(x  I ..... xt) ) fct~(x I ..... xt, t) 
/ 

=E 
oc=l 

I dxl+, T(~, l +  1) f a +  I)(x ' ..... x/+ 1, t) (14) 

f~l~(xt ..... xl, t ) - N  I I dxt+ , "  " d x  N P({G, v=}, t) (15) 

where x~ denotes the position and velocity for particle 0~ and E(x~ ..... x/) is 
the generator of the dynamics for a system of I particles. 
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As a simple illustration of these results, consider the special state of 
homogeneous cooling, for which the system is translationally invariant and 
the dynamics occurs entirely through the time dependence of the tem- 
perature, T(t), defined in terms of the average kinetic energy density, by 
(~(r, t[ F ) )  = ~n(r, t) kl~ T(r, t). The cooling rate is then 

2 
O, T(t) = - - -  ( 1 - ~2) w(T(t)) (16) 

3nkl~ 

where ( 1 - ~-~) w(T(t) ) - - ( LO( r, t [ F )  ). The right side is easily calculated 
in terms of the two-particle reduced distribution function J'~2~(x~, x~, t). To 
solve this equation it is necessary to know the dependence of w on T, which 
occurs entirely through this distribution function. Dimensional analysis and 
symmetry considerations show that for this state it has the form 

flZ~(x I , x 2, t) ~ n2vcT~'(t)q92~(v i, v,_) (17) 

where the velocities have been scaled to the thermal velocity, vo(t)= 
(2kBT/m)~ 2. It follows that w(T(t)) and T(t) are given by 

w(T(t)) = ~m(na)'- v3(t) f dr, dv 2 

x l dg2 0 (g '8 ) (g '~ )3  ck'2'(v~/v,,(t), v,_/vo(t)) (18) 

T(t)= T(O) 1 + 
.~ 

t,F' = ~ ( 1 - 0c2) w( T(0))[mnv~;(0)] -I (19) 

where g,. is the equilibrium pair correlation function at contact. Equa- 
tion (19) is well known from hydrodynamic descriptions of homogeneous 
cooling, ~5~ although the derivation here shows it is exact and provides 
an expression for the time scale valid at all densities and all degrees of 
dissipation. Further discussion of the homogeneous cooling state is given 
below. 

3. KINETIC EQUATION 

A formal kinetic equation for the one particle distribution is obtained 
iff~2~(x~, x2, t) can be expressed as a functional offC~(x~, t). To see how 
this might be done, consider the class of initial states of the form 

N 

p({r~,%})= W({r~})1--[ q~(x/~) (20) 
/~=1 



Dissipative Dynamics for Hard Spheres 1057 

where the single-particle function ~b(x) is arbitrary. Then all of the reduced 
distribution functions are functionals of ~(x), e.g., 

f~ '~ (x , , t )= f" ' ( x , , t ]~b) ,  f~ ' - ' ( x l , x , , t )= f l2~(x , , x2 ,  t[(~) (21) 

If the functional relationship o f J  "c~ to ~b can be inverted, it can be used to 
expressf  ~2~ as a functional o f f  ~ i~, i.e.,f~_,~(xl, x2, t [~b) -- GI2~(xt, x , ,  t if411). 
Substitution of this into the first BBGKY hierarchy equation then gives a 
formally exact closed kinetic equation, 

(a, + v, . V , ) f { l l ( x , , t ) = i d x 2 T ( x l , x 2 ) G ~ 2 ~ ( x l , x 2 ,  tlf{l~) (22) 

This formal analysis provides a useful starting point for obtaining 
approximate kinetic theories. For example, at low density the dimension- 
less parameter nor 3 is small and an asymptotic expansion of the functional 
GC2~(x~, x2, t I f  ~ )  gives the Boltzmann-Bogoliubov equation as a leading 
approximation. Here, we consider a different approximation that does not 
imply a limitation to low density. This approximation, the revised Enskog 
theory (RET), is obtained by using the exact short-time form of the func- 
tional G c2~ ~ G ~2~(xl, x2, 0 [ f~ i ~) in Eq. (22). It is remarkable that this 
functional can be determined exactly in terms of the equilibrium free energy 
density functional for an inhomogeneous state. r This is a consequence 
of the special choice of initial conditions in Eq. (20), where all spatial 
correlations arise from the overlap function W({r~}). More precisely, the 
functional GIZ) (x l , x2 ,0 l f  Ill) is determined from the second functional 
derivative of the free energy, which in turn defines the equilibrium pair 
correlation function, g,,(r ~, r2 ] n), 

G42~(x,,xz, O [ f " ~ ) = g , . ( r , , r 2 [ n ) f " ( x , , t ) f l ' ~ ( x 2 ,  t) (23) 

The equilibrium pair correlation function is a functional of the non- 
equilibrium density, 

n(r) - I dv f l ' l (x ,  t) (24) 

As there are excellent approximations available for the hard-sphere free 
energy density functional, ~ ~7~ we will take g,,(r~, r2 [n) as a known functional 
of 17. Substitution of Eq. (23) into Eq. (22) gives the RET, generalized to the 
case of dissipative dynamics, 
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(0, +vl  �9 Vi) f l l ) (x l ,  t) = J ( x t ,  t l f  ~l~) (25) 

J ( x , ,  t I f " ' )  = a  2 f dvz f aa  O(g. #)(g. #)[a-2g,.(r,, r, - 6  In) 

x f  ~ll(r I , b - lv l ,  t) f~t~(r I - 6 ,  b-%2, t) 

- - g , . ( r l , r l + g l n ) f ~ l ) ( r t , v l , t ) f l l l ( r l + a ,  v2, t)] (26) 

The RET is a highly nonlinear equation through the dependence on 
f~t) of g,.(r t, r2 In). It is this nonlinearity that constitutes Ernst and van 
Beijeren's revision of the earlier kinetic theory of Enskog. This change is 
essential to admit stationary solutions of Eq. (25) for both fluid and crystal 
phases ~8~ in the case of elastic hard spheres. To our knowledge, all previous 
kinetic theory applications to granular flow have been based on the 
Boltzmann or Enskog equations. ~ 15. ~9) In the present context, this revision 
from the usual Enskog equation should be significant for a description of 
the cluster phase following instability of the homogeneous cooling state, 
since ge(rt, r2[n) describes the structure for an inhomogeneous fluid. The 
RET provides a unique basis for the description of dynamics across the 
whole range of densities, length scales, and degrees of dissipation. We know 
of no other theory with such generality. 

For elastic collisions, a fluid dynamics description is based on the local 
conservation laws for mass, momentum, and energy. In the case of dissipative 
dynamics energy is no longer conserved. Nevertheless, it is straightforward 
to obtain the corresponding balance equations for these same variables. 
The results are 

On 
o t + V . ( n U ) = O  (27) 

OUi 
Ot + U ' V U i + ( n m ) - I  OjPij=O (28) 

0 e  

- - + V . ( e U ) + P o . O i U j + V ' q =  - ( 1 - ~ 2 )  w (29) 
8t 

where n, e, and U are the number density, internal energy density, and 
flow velocity, respectively. The pressure tensor P0 and the heat flux q have 

- -  k c both "kinetic" and "collisional transfer" contributions, P,:/-P~;+ Pu and 
q = q~ + q", given by 

f 1 19, 
qk = j dv -~ my -v'f ~ ')(x, t) I av mv;v)f'"(x, t), (3o) 
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c 1 + dv 2 f dO O(g-# ) (g  Pij-  4 ~ f dvl "d)2 ~it~J 

1 

Xlo d2 g,.(r--(1-- 2) tT, r + 2~ [n) 

x f l ' l ( r - - ( 1  - 2 )  ~, vl, t) ft '~(r + ),tr, v2, t) (31) 

q'=--4 --rnal+~ 3 I d v ,  dv2Idl20(g.#)(g.#)2(G, . ~)~ 

I 

Xfo d2 g , . ( r - (1-  2) ~,r + 2trln) 

x f l ' ~ ( r -  (1 --2)  ~, vt, t) ftt~(r + 26, v2, t) (32) 

Here v' = v - U ( r ,  t) is the peculiar velocity and G' =~(vt~ ' +v ' ) .  The colli- 
sional transfer contributions vanish at low density, but dominate at high 
densities. Finally, the source term w in the energy equation describes the 
dissipation and its expression is 

/7 /0  -2 
w = ~ -  f dv, dv2 ~ d l 2 0 ( g ' # ) ( g ' # )  s 

x ge(r, r + 6 In)f~ll(r, v,, t )f~l l(r  +~ ,  v2, t) (33) 

which is the RET approximation to (18). These balance equations are an 
exact consequence of the kinetic equation (25) and provide the basis for a 
fluid dynamics description of rapid granular flow. A detailed elaboration 
will be given elsewhere. 

4. MONTE CARLO SIMULATION 

In the low-density limit the RET for elastic collisions reduces to the 
Boltzmann,-Bogoliubov equation. If the further limitation to length scales 
large compared to a is made, then the usual Boltzmann kinetic equation is 
regained. While analytic solutions to the Boltzmann equation are difficult 
in general, a numerical Monte Carlo simulation method has been developed 
over the past 20 years to the point that most low-density gas flows can be 
addressed quantitatively by this method. It is known as the Bird direct 
simulation method. 12~ Recently, this method has been extended to provide 
direct simulation of the RET equation/4~ It is difficult to overemphasize the 
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importance of such a practical tool for study of the hard-sphere system 
over the full range of densities and space scales, even far from equilibrium. 
Initial results for a fluid under large shear at high densities have verified the 
promise of this method. 

In this section, this new Monte Carlo simulation method is extended 
further to include dissipative collisions. There are two parts to the simulation 
in each unit time step, free streaming followed by a (possible) collision. The 
volume of the system is divided into cells of dimension smaller than the mean 
free path, and N particles are introduced at t = 0 with positions and velocities 
sampled statistically from a specified initial distribution function. The 
distribution of particles is calculated at t = r, with r much smaller than the 
mean free time, as follows. First the particles are displaced by {zJr==v~r}. 
For each particle ~ a sphere of radius a is drawn around it. A point on 
each sphere is selected at random, the cell associated with that point iden- 
tified, and a particle fl in that cell is chosen at random. In this way N pairs 
of particles are identified as candidates for a binary collision. The collision 
for a pair (0~, fl) is accepted with probability o~/~ equal to the RET collision 
rate times the time interval r, 

co~/j = 4go-269(g,_/~ �9 #)(g~/~ - 6) g,,(r~, r~ + ~r[n) n/~r (34) 

Here g,/~ = v ~ -  v/~ and n/~ is the density in cell fl [in general g,.(r~, r~ + q;ln) 
depends on the densities of all cells]. If the collision is accepted, the 
velocity of particle 0~ is changed by the direct scattering relation, Eq. (2), 
to ~ = v ~ -  �89 + 0~) 6(g~/~ �9 6). If the collision is rejected, there is no change 
in the velocity. The process is then repeated for each subsequent time step. 
In practice there are some variations of the above for better efficiency. 

This method provides the complete one particle distribution function 
(coarse grained over the cells), from which all relevant physical observables 
can be computed as averages. The more detailed information from the 
distribution function itself is also useful, as illustrated in the last section for 
the homogeneous cooling state of rapid granular flow. 

5. KINETIC MODEL 

Almost all analytic studies of the RET have been restricted to states 
near equilibrium. Even in the low-density Boltzmann limit there is very 
little known about solutions far from equilibrium. However, it has proven 
very fruitful to consider closely related, but more practical, kinetic equa- 
tions that retain the relevant physical and mathematical properties of the 
Boltzmann equation (see ref. 21 for a review). Such kinetic equations are 
called kinetic models. Recently, it has been shown how this concept of 
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kinetic modeling can be applied to the RET with elastic collisions to study 
states far from equilibrium at high densities. ~5~ In this section, we present 
the corresponding kinetic model for the RET with dissipative dynamics. 

The basic idea of a kinetic model is to impose maximum simplicity 
while preserving the essential exact properties of the RET. These include 
the exact equilibrium states (both fluid and crystal) and the exact conser- 
vation laws. This is accomplished by representing the collision operator j 
as an expansion in a complete set of polynomials with a scalar product 
weighted with respect to a local equilibrium distribution. The contribution 
from the subspace spanned by 1, v, and v 2 is retained exactly, while the 
contribution from the orthogonal subspace is approximated by a single 
relaxation time. The details will be described elsewhere and only the result 
given here: 

(0, + v. v) J'~"(x, t) 

= - v [ f ~ " ( x ,  t)-J~(x, t ) ]  

1 
_ _ - -  , I  ( .  . q ( '  c kBTn f , (x,  t){viOiPu+~b(v')[V +PiiOiU~+(1 -o~ 2) w]} (35) 

where 4(v) = mv'-/3k ~ T -  1 and J) is the local equilibrium distribution, 

fl(x, t) = n(r, t) e - " " ' ' ; ,  vo = vo(r, t) - [2k B T(r, t)/m] t ,2 (36) 
\roy0/ 

Also, v(n(r, t), T(r, t)) is the collision frequency. It can be chosen to 
optimize agreement between the kinetic model and some specific property 
of interest, such as a transport coefficient. A specific example is introduced 
in the next section. 

In the above expressions we behave introduced the granular tempera- 
ture T(r, t). This has proven to be a very useful concept in the description 
of granular flow. Here it has no association with the equilibrium of two 
systems in contact, but is simply a measure of the average kinetic energy 
through the definition given above (16), or equivalently, 

e(r, t) 3n(r, t)kBT(r, t )=fdv  = ~_mvt ,,~t~,.._J ~x, t) (37) 

The collisional transfer contributions to the fluxes are defined as in 
Eqs. (31) and (32). The first term on the right side of Eq. (35) is a single- 
relaxation-time model, while the last term is necessary for the collisional 
transfer contributions to the local conservation laws. In the limit 0~ = 1 this 
model agrees with that of ref. 5, while in the limit of low density and small 
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dissipation it agrees with that of ref. 7. An example of its application to 
granular flow is given in the next section. 

6. HOMOGENEOUS COOLING STATE 

The special, idealized state of homogeneous cooling has been noted at 
the end of Section 2. The system is spatially uniform and the dynamics 
occurs entirely through the time dependence of the temperature, T(t) .  It is 
interesting to note that in this case the dependence of Eq. (25) on density 
can be scaled out by a proper choice of units. Consequently, the distribu- 
tion function for the homogeneous cooling state is completely determined 
by the low density Boltzmann equation alone. Equations (27) and (28) are 
satisfied identically, and the energy equation (29) gives (16)-(19), except 
that w ( T ( t ) )  is given by the Enskog approximation (33). The distribution 
function, f e l l ( x ,  t) = nv o 3(t) (~(V/Vo(t)), is determined from the kinetic equa- 
tion (25). The solution for 0~-- 1 is a Maxwellian as expected, but for 0~ < I 
the solution is qualitatively different from a Maxwellian. This can be seen 
from a perturbation expansion in powers of ( 1 - ~) valid for weakly dissi- 
pative dynamics. If ~ differs significantly from unity, the solution to (25) is 
not known. If one considers the corresponding solution to the kinetic 
model of Section 5, it is easily seen that a Maxwellian is obtained for all 
values of ~. Although, as mentioned above, this is not exactly the case for 
the RET, the kinetic model may still be useful for most of the physical 
situations. To test this assumption, we have performed numerical Monte 
Carlo simulations using the method described in Section 4 to compute the 
distribution function for the homogeneous cooling state. The results show 
that the distribution function for thermal velocities (v~<2Vo) can be 
approximated very accurately by a Maxwellian, even for relatively small 
values of the restitution coefficient. On the other hand, there exists a slight 
overpopulation of high-energy particles. For instance, at ~ = 0.7, the fraction 
of particles with v/> 3Vo is about 16% larger than the Maxwellian value. 
These results support using the kinetic model even for conditions of large 
dissipation. A detailed description of the Monte Carlo simulation results, 
including tests of the velocity scaling law, deviations from Maxwellian, and 
the dependence of the cooling rate to(00 on ~, can be found in ref. 22. 

To describe the stability of the homogeneous cooling state and the 
dynamics of states close to it, a modified Chapman-Enskog expansion can be 
performed. The distribution function is represented as an expansion in 
powers of hydrodynamic gradients around the reference state of homo- 
geneous cooling. The results at first order in the gradients can be used to 
calculate the heat and momentum fluxes as functions of these gradients. This 
provides the constitutive equations to construct the Navier-Stokes-order 
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hydrodynamics for granular flow from Eqs. (27)-(29). Since the homo- 
genous cooling state is known for the kinetic model, the Chapman-Enskog 
solution can be determined exactly to Navier-Stokes order. The resulting 
fluxes are found to be 

P u = ( P  -1-~-~ P "\)Ou 

2 
-~(~) (8,uj+a,u,-~o 

q =  - -2 (~)  V T - p ( ~ )  Vn 

\ 
V �9 U ) - x ( ~ )  ~uV -U (38) 

(39) 

These are quite similar to the results for elastic collisions, with some impor- 
tant differences. The form (38) differs by an additional contribution that 
effectively reduces the hydrostatic pressure. Also, (39) differs from Fourier's 
law by the term proportional to the density gradient, with an associated 
new transport coefficient, p(~). The shear viscosity r/(~), bulk viscosity 
x(~), thermal conductivity 2(e), and the new transport coefficient p(e) are 
given by 

r/(g) = r [ g,7 

2(~) = ;~c~ [ g,7 

p(~) =/~(o)(~) I g'71 + ( 

1+~ ~(~) = ~ K~ 

'+(1 +o0 2=n *] +~ x(o,) 

1 , ]  3ka 
'+(1  +~)~rm +2--m-m x(00 

1 , 
1 +~)~nn  ] 

(40) 

(41) 

(42) 

(43) 

Here x E is the Enskog value for the bulk viscosity at 0c= 1 and n*- - -na  3. 
Also, quantities with a superscript zero denote their low-density values, 

,?o,(~) [ 5c ] - '  
~ k 1 - - ~  ( I - cr 2) (44) 

2'~ [1 5c ] - '  
2~o~(1) = ---~- ( 1 _~2) (45) 

,Vo~(1) = 12 - y ( 1  _~2) l _ z (  1 _~2) 

• T (n  - l + g,71 8 ,  g,.) (46) 
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with r/"'~( 1 ) = ng,./flv and 2~~ 1 ) = 5kt~ng,,/2mflv. The choice for the collision 
frequency has been such as to assure the correct low-density limit for the 
shear viscosity, v = (16/5c) ng,.a2(~zku~ T/m)~'-, where c ~- 1.016. These results 
illustrate how the kinetic model provides a practical means to derive hydro- 
dynamic equations for inelastic collisions that are appropriate for both high 
densities and possibly strong dissipation, with explicit expressions for the 
parameters of these equations. Similar expressions have been obtained by 
Lun et aU ~ from an approximate analysis of the Enskog equation on the 
assumption of weak dissipation. 

The transport coefficients are positive for 0 < e ~< 1. However, linear- 
ization of the hydrodynamic equations around the homogeneous cooling 
state shows a long-wavelength instability. As a consequence a small density 
perturbation grows in time and it is expected that this is a precursor of the 
transition to cluster formation. It is not clear to what extent the late-stage 
cluster phase can be described at a hydrodynamic level. The Monte Carlo 
simulations of ref. 22 confirm that this phenomenon can be studied at the 
level of the kinetic theory given here. Furthermore, at small a (large dis- 
sipation) a "collapse" occurs and this certainly will require description at 
the kinetic level. Both the kinetic model and the Monte Carlo simulation 
method should provide instructive information complementary to the 
molecular dynamics simulations. 

7. D ISCUSSION 

In this brief presentation several successful methods of nonequilibrium 
statistical mechanics have been extended for application to systems with 
dissipative dynamics. Only the basic tools have been provided, along with 
an indication of their potential for more specific applications. Some of these 
applications can be summarized as follows: 

�9 The identification of the generators for dissipative hard sphere 
dynamics and the associated Liouville equation allows application of 
formal linear response methods to problems such as granular flow. For 
example, it is possible to identify corresponding Green-Kubo expressions for 
transport coefficients. Such expressions are appropriate representations for 
application of theoretical many-body approximations and for controlled 
molecular dynamics simulations. 

�9 The simplest such realistic many-body approximation is the revised 
Enskog kinetic theory described here. Applications of this equation to 
specific physical conditions constitutes a first-order problem for controlled 
analysis of the qualitative features in granular flow. Its extension to more 
realistic scattering processes such as rough and irregular particles is complex 
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but straightforward. Development of kinetic theory beyond the Enskog 
approximation for elastic spheres is quite advanced for both the distribution 
function and fluctuations. This has lead to the discovery and understanding 
of qualitatively different phenomena, such as algebraic decay of correlations 
in both space and time. The associated mode coupling mechanism can be 
formulated for inelastic spheres as well from the Liouville formalism of 
Section 2. 

�9 The proposal given here for an efficient Monte Carlo simulation 
method to solve the RET has great potential for exploration of complex 
flows, based on the corresponding success at low density for elastic collisions. 
Of particular interest is the simulation of highly inhomogeneous states 
where significant differences fl'om the Enskog theory are expected. This is 
a developing field whose limitations are not yet identified. 

�9 Theoretical studies of the RET are an essential complement to the 
numerical Monte Carlo simulations, for interpretation and analysis. At low 
density and for elastic collisions this complement has been provided by 
kinetic models such as the BGK model. Here we have proposed its 
generalization to both higher densities and dissipative collisions. One of the 
key practical advantages of the kinetic model over the RET is the relative 
ease of applying it to boundary-driven flows. For example, an exact solution 
is possible in the case of uniform shear flow. 

In summary, it appears there is significant potential for application of 
methods from the nonequilibrium statistical mechanics of hard spheres to 
systems with dissipative dynamics. This potential refers both to establishing 
a firm and clear basis for a macroscopic description and to quantitative 
methods for analysis. 
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